Adventures In Audio

Power amps: Class A, Class, B and Class D

Power amps have a tough job to do, particularly in live sound. A 1000 watt amplifier, for instance, might be called upon to deliver up to 60 volts at a current of up to 16 amps. And don't forget that 1000 watts, equal to 1 kilowatt, provided by an electric radiator would probably be enough to keep your studio warm in winter. That's a lot of power to control.

There are a number of 'classes' in which power amplifiers can operate. Very small power amplifiers can operate in Class A. In Class A, there is a 'standing current'. This means that a current flows through the output transistors (or tubes) all the time that is as large as the maximum current that will ever be delivered to the loudspeakers. Imagine a river flowing through its normal channel, then diverting that flow to a watermill to do some useful work. Plainly, quantity of water, or current, is never going to be a problem.

But in a Class A amplifier, this standing current causes a different problem in itself - heat. Heat is of concern both in the output devices and the amplifier's own power supply. For this reason, it is rare to see a Class A power amplifier with an output greater than 20 watts or so. (You will sometimes see microphone pre-amplifiers described as Class A. These classes apply even for small signals, but at small signal levels there really isn't any point in using anything other than Class A. So in this context, Class A should just be expected - it isn't a bonus in any way).

The solution to the lack of efficiency of Class A is to use Class B. In Class B there is no standing current in the output devices. It is supplied to the loudspeakers as and when needed, and only as much as is needed. The problem in Class B is that there is a switching effect between the positive and negative half cycles of the waveform. To cure this, a small standing current is provided, making the amplifier Class AB, which the vast majority of power amplifiers are.

Although Class B is more efficient than Class A, meaning that less energy is wasted, it is still only 70% efficient at best. This means that 30% of the energy is transformed into heat inside the amplifier, which means that the amplifier must have large heatsinks or a fan to dissipate the waste heat.

But then there is Class D. Class D works in an altogether different way. Here, the amplifier switches rapidly between zero volts and maximum volts. There is no in-between level. But the time it spends on maximum is in proportion to the level of the input signal. So the amount of current made available by a Class D amplifier is proportional to the input. The high switching frequency is filtered out leaving just the amplified audio signal that is sent to the loudspeakers.

The efficiency of a Class D amplifier is determined by the 'rise time' - the time it takes to go from zero volts to maximum volts. The faster this can be, the more efficient the amplifier is and the less heat produced actually in the amp. Typically, Class D amplifiers can approach 90% efficiency.

This means that Class D amplifiers can be incredibly small and lightweight, because they simply do not need the massive cooling of normal Class AB amps. It has to be said that in purist circles, there is still a doubt about the ultimate sound quality of Class D amplifiers, but for live sound they seem set to take over the industry. Amp racks have never been so small, and since Class D amplifiers are lightweight, there is no barrier to their use in active loudspeaker systems.

Sunday December 25, 2005

Like, follow, and comment on this article at Facebook, Twitter, Reddit, Instagram or the social network of your choice.

David Mellor

David Mellor

David Mellor is CEO and Course Director of Audio Masterclass. David has designed courses in audio education and training since 1986 and is the publisher and principal writer of Adventures In Audio.

Audiophiles - You're wasting your money!

Audiophiles - You're wasting your money!

Watch on YouTube...

If you can't hear this then you're not an audiophile

If you can't hear this then you're not an audiophile

Watch on YouTube...

CD vs. 24-bit streaming - Sound of the past vs. sound of the future

CD vs. 24-bit streaming - Sound of the past vs. sound of the future

Watch on YouTube...

The Vinyl Revival - So wrong on so many levels

The Vinyl Revival - So wrong on so many levels

Watch on YouTube...

More from Adventures In Audio...

Is this the world's most diabolically expensive DAC? [iFi Diablo 2]

A tiny amplifier with a weird switch in a strange place

Will this DAC/headphone-amp dongle work with *your* phone? [Fosi Audio DS2]

When is a tube power amp not a tube power amp? - Aiyima T9 review

I test the Verum 1 Planar Magnetic headphones for listening and production

Your power amp is average - Here's why

Adding tube warmth with the Freqtube FT-1 - Audio demonstration

Adding tubes to a synth track with Freqport Freqtube

The tiny amp that does (nearly) everything

Can I unmix this track?

Why you need a mono amp in your system - Fosi Audio ZA3 review

Can you get great earbud bass with Soundpeats AIR4 Pro?

24 bits or 96 kHz? Which makes most difference?

16-bit vs. 24-bit - Less noise or more detail?

Are these earphones REALLY lossless? Questyle NHB12

Could this be your first oscilloscope? FNIRSI DSO-TC3

OneOdio Monitor 60 Hi-Res wired headphones full review

Watch me rebuild my studio with the FlexiSpot E7 Pro standing desk

Can a tiny box do all this? Testing the Fosi Audio SK01 headphone amp, preamp, EQ

Hi-Fi comfort OVER your ears? TRUEFREE O1 detailed review

Get the tube sound in your system with the Fosi Audio P3

Any studio you like, any listening room you like - For producers and audiophiles

Hidden Hi-Fi - The equipment you never knew you *didn't* need - Fosi Audio N3

Adding tubes to a jazz mix with Freqport Freqtube